
43527

TETRIX® PRIZM™ Workshop Guide

1

NotesWho Are We and Why Are We Here?

Who is Pitsco?
Pitsco’s unwavering focus on innovative educational solutions and
unparalleled customer service began when the company was founded
in 1971 by three teachers. Using product flyers promoting just a handful
of kits and related curriculum in the beginning, Pitsco expanded rapidly
from a humble dream to a multifaceted corporation with thousands
of products, more than 200 employees, and a simple vision: Leading
education that positively affects learners.

What do we do?
The company helps students excel with a variety of science, technology,
engineering, and math (STEM) classroom solutions that are equally
robust and engaging. Our age-appropriate, student-centered K-12
learning solutions in STEM and acceleration comprise standards-based,
relevant, hands-on activities delivered via a student-focused learning
process. At Pitsco, every product we engineer, every activity we write,
every curriculum we develop, and every solution we design is provided
for the purpose of helping students use their hands to engage their
minds to learn, grow, and succeed – in the classroom and in life.

What is TETRIX®?
Introduced in 2008, TETRIX® is the metal building system from Pitsco,
currently comprising TETRIX MAX and TETRIX PRIME. As a great platform
for robotics, it has become the building system of choice for many
robotics competitions as well as the preferred choice in classrooms
across the country and around the world. In 2016, Pitsco Education
introduced the TETRIX PRIZM™ Robotics Controller, a proprietary brain
for MAX robots geared at bringing coding to life for students.

2

NotesWorkshop Agenda
•	 Communicate logistics from classroom implementation
•	 Introduction to TETRIX MAX, PRIZM controller, and programming

language
•	 Hands-on building experience
•	 Hands-on programming experience
•	 Discuss STEM connections and educational value for students
•	 Present classroom activity options
•	 Have fun!

Logistics for Classroom Implementation
Physical location

•	 Room to move – The room should have building space/tables as
well as an area to demo the robot after it is built. Keep in mind
that space will depend on the number of students as well as the
platform.

Necessary material
•	 The recommended ratio of participants to sets would be two

participants for each set. If computers are needed, the same ratio
would apply – two participants per computer. If computers are
used, keep in mind that software must be preloaded and ready
to use. Any extra activity-specific material must be on hand:
measuring devices, tape, play/field elements, mats, and so on.

Front-end prep

•	 Any necessary software must be preloaded and ready to use,
which might require collaboration with on-site IT staff.

•	 Ensure all sets have been inventoried and sorted and are
complete and ready to go.

•	 Batteries must be accounted for (for remote controls as well as
robots) and charged if needed.

•	 Inquire about or confirm any special needs or requirements for
participants.

3

NotesTETRIX® PRIZM™ Test Bed Activities
After completing the construction of the
PRIZM™ Test Bed, it is time to have some
fun. We will work through a series of
activities where we program the PRIZM
controller to control a variety of motors
and sensors plugged into the test bed.

Types of Activities
Each of the five activities is designed to
introduce you to the Arduino Software
(IDE) and how it works with the PRIZM
controller and select basic hardware. Success with these five activities
demonstrates how easy it is to get started building and programming
robots using the TETRIX® solution.

Activity 1: Hello World!
•	 Complete an intro activity for beginner to blink onboard LED.

Activity 2: Moving Your DC Motors
•	 Keep things simple – use PRIZM to control one TETRIX DC Motor.

Activity 3: Moving Your Servo Motors
•	 Rotate a servo motor – work with positioning.

Activity 4: Introduction to the Line Finder Sensor
•	 Introduce sensors and how to work with the Line Finder Sensor

using PRIZM.

Activity 5: Introduction to the Ultrasonic Sensor
•	 Work with the Ultrasonic Sensor using PRIZM.

4

Notes
Activity 1: Hello World!
Let’s begin with a very simple sketch that will blink the onboard
PRIZM red LED. This activity will be the PRIZM equivalent of a Hello
World! program, which is usually the intro activity for any beginning
programmer. The sketch we will create is one of the simplest and most
basic PRIZM functions and requires only the PRIZM, a power source, and a
USB connection to the computer.

Figure 1

Opening the Sketch
Let’s start by looking at our first example sketch. Open the sketch by
selecting File > Examples > TETRIX_PRIZM > GettingStarted_Act1_
Blink_RedLED. A new sketch window will open titled GettingStarted_
Act1_Blink_RedLED (Figure 1).

Parts Needed:
•	 PRIZM Test Bed

•	 USB cable

•	 Computer

5

Notes
Building the Knowledge Base
Before we can upload the sketch to the PRIZM, we need to make sure the
PRIZM has power, is connected to the computer, and is detected by the
computer (Figure 2). When the PRIZM is connected as shown, power on
the PRIZM with the on/off switch. You will know the PRIZM has power by
the glowing blue light. To see if the PRIZM is detected by the computer,
check the port.

As the data uploads, the yellow LEDs to the side of the USB connection
will flash. When the upload is finished, there will be a solid green LED
beside the red Reset button. The green LED means the code is ready to
execute. Press Start to execute the code. The red LED next to the Reset
button will blink off and on in one-second intervals. To stop the program,
press the Reset button.

Congratulations! You have successfully uploaded your first sketch to the
PRIZM and demonstrated the results to the world.

Executing the Code
To upload the sketch to the PRIZM, click Upload (Figure 3).

Figure 2

Figure 3

6

Notes

Real-World Connection
Many things within the electronic world around us blink, such as caution
lights for road construction warnings, waffle irons (the blinking light turns
solid when the waffles are ready), or notifications on our phones indicating
that we have incoming calls. The rate at which these items blink – or
when they blink – is controlled by electronics. This control can be from
simple timing circuits – or it can be from computers or other devices with
microprocessor chips.

STEM Extensions
Science

• Electricity terms (voltage, current, and resistance)
• How an LED works
• What determines the colour of an LED

Technology
• How computers work
• How computers are programmed

Engineering
• Problem-solving process

Math
• Frequency
• Duration
• Sequence

Moving Forward
For now, let’s change some parameters in our code and see how it
affects the behaviour of the red LED. According to the comments in the
example, the delay function defines the duration the LED is on or off.
This is a parameter we can change in our code. Experiment with
changing those values to create new blinking behaviors for the LED. Try
making the LED blink faster or slower.

Liz Bray
Highlight
American spelling. Should be 'behaviour'

Liz Bray
Highlight
American spelling. Should be 'colour'

7

Notes
Hacking the Code Activity
With the example as a reference, try creating the blinking LED in a new
sketch. Instead of just blinking the red LED, try to blink the green LED
too. Flashing or blinking lights have a rich tradition as a method of
signaling or long-distance communication. You could challenge yourself to
communicate “Hello World!” in blinking Morse code.

To start a new sketch, select File > New.

When creating your own sketch, there is a built-in software tool to help
ensure your code is free of syntax errors. You can check your syntax by
clicking Verify (Figure 4). This will cause the code to compile but not
upload. You will be prompted to save your sketch before verification.

If there are errors in the code, they will be displayed in the compiler error
window at the bottom of the sketch window (Figure 5).

Errors will need to be corrected before code can be uploaded to the PRIZM
controller. If there are no errors, the compiler will complete and indicate
that it is done compiling, and you can upload your code.

Figure 5

Figure 4

8

Notes
Activity 2: Moving Your DC Motors
For our second activity we want to keep things simple but add an element
of motion. We will create a sketch that will rotate a TETRIX DC Motor.

Parts Needed:
•	 PRIZM Test Bed

•	 USB cable

•	 Computer

Figure 6

Opening the Sketch
Before we open our next example sketch, be sure to save any sketch you
want to reference later. Open the sketch by selecting File > Examples >
TETRIX_PRIZM > GettingStarted_Act2_Move_DCMotor. A new sketch
window will open titled GettingStarted_Act2_Move_DCMotor (Figure 6).

9

Notes

Moving Forward
The function used in this sketch is prizm.setMotorPower. It has two
parameters: motor channel and motor power. In the example,
prizm.setMotorPower(1,25) means motor 1 will spin at 25% power
clockwise. The first value in parentheses defines the motor channel, and
the second value in parentheses defines power percentage and direction.

We can alter the direction and stopping behavior by changing the second
value in parentheses. If the second value is negative, the motor rotates
counterclockwise, as shown in the sketch. If we change the value to 125
instead of 0, the stopping behavior will change from coast to brake.

Practice changing the parameters in the sketch. We can change the motor
power, motor direction, stopping behavior, and delay between functions.
Observe the effect these changes have on the motor.

Building the Knowledge Base
In this second sketch we want to take a closer look at the sketch syntax,
specifically comments. Comments are lines in the program that are used
to inform yourself or others about the way the program works. They are
for informational purposes only and do not affect the code.

There are two types of comments: single line and multiline. Single-line
comments are preceded by // and anything after // is a comment to the
end of the line. Multiline comments are preceded by /* and can be several
lines long but must be closed with */.

When you look at this second sketch, the comments explain how the
sketch author intended this program to work. The intent of this sketch
is to spin the DC motor channel 1 for five seconds and then coast to a
stop. After two seconds of coasting, the motor will spin in the opposite
direction. This behavior will continue until the red Reset button is pressed.

Executing the Code
Before we can upload the sketch to the PRIZM, remember to check our
connections.

Upload the sketch. The green LED will light up, indicating that the code is
ready to execute. When this has happened, press the green Start button
on the PRIZM controller.

Observe the direction and duration of the motor rotation. Based on the
sketch comments, did the behavior match expectations?

Press the red Reset button when you are ready to stop the motor.

10

Notes
Real-World Connection
Controlling motors is not a new thing. Controlling them by an onboard
computer in an electric car (such as a Tesla) at 70 mph down the road or
during a sharp turn on a curvy highway – that is new! For these cars that
are driven by electric motors, the speed and power levels of all the drive
motors must be coordinated to make the turn in the highway as the driver
is turning the steering wheel. All this has been programmed into the brains
of these cars to make it simple and easy for the driver.

STEM Extensions
Science

•	 How DC motors work
•	 Angular velocity

Technology
•	 Relationship between power, voltage, and current
•	 Torque

Engineering
•	 Determining load and torque

Math
•	 Pulse width modulation (PWM)
•	 Revolutions per minute (rpm)

Hacking the Code Activity
With the example as a reference, try creating a new sketch to move your
DC motor. Remember what we learned from our first activity and think of
creative ways to include blinking LEDs with your rotating motor.

11

Notes
Activity 3: Moving Your Servo Motors
Our third activity will explore another element of motion with servo
motors. We will create a sketch to rotate a servo motor.

Servo motors offer the benefit of being able to move to a set position
regardless of the start position within a limited range of motion. Servo
motors have an approximate range of motion from 0 to 180 degrees. For
example, we can tell a servo to go to position 45 degrees regardless of
where it starts. If it starts at 0 degrees, it will move clockwise to 45 degrees.
If it starts at 120 degrees, it will move counterclockwise to 45 degrees.

Figure 7

Opening the Sketch
Before we open our next example sketch, be sure to save any sketch you
want to reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM >
GettingStarted_Act3_Move_Servo. A new sketch window will open titled
GettingStarted_Act3_Move_Servo (Figure 7).

Parts Needed:
•	 PRIZM Test Bed

•	 USB cable

•	 Computer

12

Notes
Building the Knowledge Base
In this third sketch we want to continue looking at sketch syntax,
specifically the include statement and the object declaration. The include
statement is used to add the functionality of the PRIZM software library
into the sketch. The object declaration is a technique used when writing
programs to make them easier to manage as they grow in size and
complexity.

The PRIZM software library is a collection of special mini programs each
with its own distinct function name. These mini programs are designed to
make writing sketches for PRIZM easy and intuitive. By using the include
statement, we add the functionality of the library to our sketch. The
include statement for PRIZM is #include <PRIZM.h>.

The object declaration is an important statement when using the PRIZM
controller along with the PRIZM software library. In order to use the
functions contained in the PRIZM software library, we must first declare a
library object name that is then inserted as a “prefix” before each library
function. The object declaration we use is PRIZM prizm;. We use this
statement just after the include statement.

In all of our sketch examples, we use an include statement and object
declaration to add the functionality of the PRIZM software library. Include
statements and object declarations are common for most forms of
C-based language.

Executing the Code
Before we can upload the sketch to the PRIZM, remember to check our
connections.

Upload the sketch. The green LED will light up, indicating the code is ready
to execute. When this has happened, press the green Start button on the
PRIZM controller.

Observe the direction and duration of the servo motor rotation. Based on
the sketch comments, did the behavior match expectations?

Press the red Reset button when you are ready to stop the motor.

13

Notes
Moving Forward
In this sketch we introduce two new PRIZM functions,
prizm.setServoSpeed and prizm.setServoPosition. Both functions
have two parameters, but they are different.

The two parameters of the prizm.setServoSpeed function are servo
channel and servo speed. In the example, prizm.setServoSpeed(1,25)
means servo 1 will spin at 25% power while it rotates to the position
commanded by the prizm.setServoPosition function. This function needs
to be called only once at the beginning of the program.

The two parameters of the prizm.setServoPosition function are servo
channel and target position. In the example, prizm.setServoPosition(1,180)
means servo 1 will rotate to the target position of 180 degrees.

In the sketch both of these functions work together to tell the servo motor
not only the target position but also the speed to use while moving to
the target position. We can alter the position and speed of the servo by
changing the values of both functions.

Practice changing the parameters in the sketch. Observe the effect these
changes have on the servo motor.

Real-World Connection
Historically, servo motors were used mostly with a remote-controlled (R/C)
transmitter for R/C model cars to control steering or R/C model airplanes
to control flaps and rudders. Robots can use servos controlled by R/C
transmitters – but they can also use servos controlled by PRIZM to operate
robotic arms, grippers, tilting and rotating mounts for cameras, or many
other applications in which precise movement is needed.

STEM Extensions
Science

•	 Levers
•	 Centripetal force

Technology
•	 Mechanical linkages
•	 Transmission of force

Engineering
•	 Applying torque

Math
•	 Radian vs Cartesian measurements
•	 Arc length

Hacking the Code Activity
With the example as a reference, try creating a new sketch to move your
servo motor. Remember what we learned from our previous activities and
think of creative ways to combine the functions you have learned.

14

Notes

Opening the Sketch
Before we open our next example sketch, be sure to save any sketch you
want to reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM >
GettingStarted_Act4_Intro_LineFinder. A new sketch window will open
titled GettingStarted_Act4_Intro_LineFinder (Figure 8).

Figure 8

Activity 4: Introduction to the Line Finder Sensor
For the fourth activity we will change focus from motor outputs to sensor
inputs by introducing and exploring sensors. In this example we will
connect a Line Finder Sensor to digital sensor port D3, and we will create a
sketch to read a digital input from the Line Finder Sensor.

Sensors enable us to gather information from the world around us. The
type of information depends on the type of sensor. The Line Finder Sensor
uses reflected infrared light to distinguish between light and dark surfaces.

Contrasting light and dark surface

Parts Needed:
•	 PRIZM Test Bed

•	 USB cable

•	 Computer

15

Notes
Building the Knowledge Base
For the fourth sketch we want to take a closer look at two of the
fundamental structure elements that make up a sketch. In every sketch
you write, there will be a setup() and a loop() function.

The setup() function follows right after the include statement and object
declaration as part of the beginning of our code. The setup() function
contains items that need to be run only once as part of the sketch. Many
functions can go here, but we always use at least the PRIZM initialization
statement, prizm.PrizmBegin(). The main purpose of this function is to
configure the Start button.

The loop() function does exactly what its name suggests. Everything
contained within the brackets of the loop will repeat consecutively until
the sketch is ended with a command or the Reset button. The loop()
contains the main body of our code.

The contents of the setup() and the loop() are contained between curly
braces. A left curly brace { begins a group of statements, and a right curly
brace } ends a group of statements. They can be thought of as bookends,
and the code in between is said to be a block of code.

Executing the Code
Before we can upload the sketch to the PRIZM, remember to check our
connections.

Upload the sketch. The green LED will light up indicating the code is ready
to execute. When this has happened, press the green Start button on the
PRIZM controller.

Hold the sensor over the contrasting surface. As the sensor moves from
light to dark, observe the red LED on the PRIZM. When the sensor is over
a line, non-reflective, or dark surface, the red LED will be off. When the
sensor is over a white or reflective surface, the red LED will be on.

Press the red Reset button when you are ready to stop the sensor.

16

Notes
Moving Forward
This sketch introduces a program structure, a new function, and a
comparison statement. The program structure is an “if” statement, the new
function is prizm.readLineSensor, and the comparison statement is ==
(equal to).

The basic “if” statement enables us to test for a certain condition. If this
condition is met, then the program can perform an action. If the statement
in the parentheses is true, the statements within brackets are run; if the
statement is not true, the program will skip over the code.

The function prizm.readLineSensor reads the state of the Line Finder Sensor
and returns a value of “1” (HIGH) or “0” (LOW). A value of “1” is returned when
the Line Finder Sensor detects a dark line or a non-reflective surface; a value
of “0” is returned when the Line Finder Sensor detects a white or reflective
surface.

The comparison statement == (equal to) defines a type of test.

When these three elements are combined in the sketch, we create a test
condition based on the input of the Line Finder Sensor that turns the red
LED on or off. In simple terms, if the Line Finder Sensor detects a line or a
non-reflective surface, then it turns the red LED off. If the Line Finder Sensor
detects a white or reflective surface, it turns the LED on.

Experiment with the Line Finder Sensor on different surfaces and different
heights to see how the sensor reacts.

Real-World Connection
Finding our way in this world can be challenging. Telling a robot how to find
its way can be challenging as well. One way that robots within a warehouse
can find their way to the right location is by having them follow lines. But
to follow lines, they have to detect the lines. One way to accomplish this
is by using a sensor that detects dark and light surfaces. This, through the
computer code, provides information to the robot about where the line
is. Other code controls the DC motors to change course if the robot strays
from the line.

STEM Extensions
Science

•	 Light – reflection and absorption
•	 Electromagnetic spectrum

Technology
•	 Digital vs analog
•	 Calibration

Engineering
•	 Determining an edge location

Math
•	 Data analysis

Hacking the Code Activity
With the example as a reference, try creating a new sketch to use your Line
Finder Sensor. Remember what we learned from our previous activities, and
think of additional creative actions to perform based on the condition of the
Line Finder Sensor.

17

Notes
Activity 5: Introduction to the Ultrasonic Sensor
For the final getting started activity, we will finish up our exploration of
sensors by creating a sketch using the Ultrasonic Sensor. In this activity
we will connect an Ultrasonic Sensor to digital sensor port D3 and display
the distance to an object we place in front of it using the serial monitor
window.

Like all sensors, the Ultrasonic Sensor enables us to gather information.
For the Ultrasonic Sensor, the information gathered communicates
distance. The sensor works by sending a sonic pulse burst and then
waiting on its return to the sensor as it is reflected off an object in range.
The reflected sonic pulse time period is measured to determine the
distance to the object. The sensor has a measuring range of approximately
3-400 centimeters.

Figure 9

Opening the Sketch
Before we open our next example sketch, be sure to save any sketch you
want to reference later.

Open the sketch by selecting File > Examples > TETRIX_PRIZM >
GettingStarted_Act5_Intro_UltraSonic. A new sketch window will open
titled GettingStarted_Act5_Intro_UltraSonic (Figure 9).

Parts Needed:
•	 PRIZM Test Bed

•	 USB cable

•	 Computer

18

Notes

Figure 10

Building the Knowledge Base
For our fifth sketch of the getting started activities, we want to look at a
useful tool for viewing data as a dynamic text output. The serial monitor
displays serial data being sent from the PRIZM via the USB connection.

The serial monitor’s value as a tool lies in its ability to display data in real
time that enables you to make better-informed design decisions about
robot builds and programming. It can be used to display data from sensors
connected to PRIZM or to examine any program data collected by the
PRIZM – for example, encoder count data, DC motor current data, or servo
position data.

Executing the Code
Before we can upload the sketch to the PRIZM, remember to check our
connections.

Upload the sketch. Before we execute the sketch, we need to open the
serial monitor from the sketch window. To open the serial monitor, click
the magnifying glass in the top-right corner of the sketch window (Figure
10).

With the sensor lying flat on the desk pointed up, press the green Start
button to execute the code.

Hold an object above the sensor at varying distances and observe the
serial monitor to see the real-time data.

Press the red Reset button when you are ready to stop the sensor.

The serial monitor will open in a separate window (Figure 11).

Figure 11

19

Notes

Figure 13

Figure 12

Moving Forward
This sketch introduces several new functions: Serial.begin(), Serial.print(),
prizm.readSonicSensorCM(), and Serial.println().

Serial.begin() enables the use of serial communication within the sketch.
As an initialization function that needs to be run only once, it belongs in
the setup of the sketch. An important part of Serial.begin() is the speed of
communication in bits per second, which is called baud rate. The default
setting for baud rate in the serial window is 9600, so that is what we use in
Serial.begin().

Serial.print() prints data to the serial port as readable text. This can take
the form of dynamic information from another device or static information
from the programmer.

prizm.readSonicSensorCM() reads the state of the Ultrasonic Sensor and
returns a digital value within the designated measurement range. For
our sensor, that range is between approximately 3-400 centimeters. This
value should reflect the distance the Ultrasonic Sensor is from a detectable
object.

Serial.println() prints data to the serial port as readable text followed by a
built-in command for a new line.

These four functions might seem complicated, but they actually work
together simply. In this sketch, Serial.begin(9600) enables and defines the
speed of communication in the setup. Serial.print() tells what type of data
to print. prizm.readSonicSensorCM() provides the type of data to print
because it is within the parentheses of Serial.print(). And
Serial.println(“ Centimeters”) clarifies the type of data being
printed – in this case, with the modifier “ Centimeters.”

20

Notes
Real-World Connection
When you were very, very young, you were probably scanned by an
ultrasonic sensor. If you do not remember this, it is because it was prior
to you being born. One of the great applications of ultrasonic technology
is within the medical field. Doctors can use the reflection of sound waves
back to sensor waves to see inside a living person. Doctors can see a
baby’s size and development – and determine when they think he or she
might be born!

STEM Extensions
Science

• Sound wave terminology (frequency, amplitude, crest, trough)
• Reflection of sound waves

Technology
• Measuring frequency
• Sound digitisation

Engineering
• Applications of sonic measurements

Math
• Inverse square law

Hacking the Code Activity
With the example as a reference, try creating a new sketch to use the
Ultrasonic Sensor with the serial monitor. Remember what we learned
from our previous activities and experiment with different objects in front
of the Ultrasonic Sensor to see if they are detectable and if the distances
can be measured accurately.

Try changing the code for prizm.readSonicSensorCM() to
prizm.readSonicSensorIN() to display the distance from an object in inches.
Also be sure to change the Serial.printIn from “ Centimeters” to
“Inches” so that the unit is correctly labeled in the serial monitor window.
Understanding how to use the Ultrasonic Sensor will give your robot vision
to be able to steer around objects and obstacles.

Liz Bray
Highlight
American spelling. Should be 'digitisation'

21

Standards Addressed
Common Core State Standards
CCSS.ELA-LITERACY.RST.9-10.1
Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or
descriptions.

CCSS.ELA-LITERACY.RST.9-10.2
Determine the central ideas or conclusions of a text; trace the text’s explanation or depiction of a complex process, phenomenon, or
concept; provide an accurate summary of the text.

CCSS.ELA-LITERACY.RST.9-10.3
Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical
tasks, attending to special cases or exceptions defined in the text.

CCSS.ELA-LITERACY.RST.9-10.4
Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific
or technical context relevant to grades 9-10 texts and topics.

CCSS.ELA-LITERACY.RST.9-10.5
Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction,
reaction force, energy).

CCSS.ELA-LITERACY.SL.9-10.1.A
Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to
evidence from texts and other research on the topic or issue to stimulate a thoughtful, well-reasoned exchange of ideas.

CCSS.ELA-LITERACY.SL.9-10.1.B
Work with peers to set rules for collegial discussions and decision-making (e.g., informal consensus, taking votes on key issues,
presentation of alternate views), clear goals and deadlines, and individual roles as needed.

CCSS.ELA-LITERACY.SL.9-10.1.C
Propel conversations by posing and responding to questions that relate the current discussion to broader themes or larger ideas;
actively incorporate others into the discussion; and clarify, verify, or challenge ideas and conclusions.

CCSS.MATH.CONTENT.HSN.Q.A.1
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently
in formulas; choose and interpret the scale and the origin in graphs and data displays.

CCSS.MATH.CONTENT.HSN.Q.A.3
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

CCSS.MATH.CONTENT.HSA.SSE.A.1.A
Interpret parts of an expression, such as terms, factors, and coefficients.

CCSS.MATH.CONTENT.HSA.CED.A.4
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

CCSS.MATH.CONTENT.HSF.IF.A.2
Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of
a context.

CCSS.MATH.CONTENT.HSF.BF.A.1.A
Determine an explicit expression, a recursive process, or steps for calculation from a context.

CCSS.MATH.CONTENT.HSF.BF.A.1.B
Combine standard function types using arithmetic operations.

CCSS.MATH.CONTENT.HSF.LE.A.1.B
Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

CCSS.MATH.CONTENT.HSF.LE.B.5
Interpret the parameters in a linear or exponential function in terms of a context.

CCSS.MATH.CONTENT.HSS.IC.A.2
Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.

22

Next Generation Science Standards
NGSS.HS-ETS1-2
Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved
through engineering.

NGSS.HS-ETS1-3
Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of
constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

NGSS.HS-PS2-3
Apply scientific and engineering ideas to design, evaluate, and refine a device that minimises the force on a macroscopic object
during a collision.

NGSS.HS-PS3-3
Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

International Technology and Engineering Educators Association
ITEEA 2.N
Systems thinking involves considering how every part relates to others.

ITEEA 2.Q
Malfunctions of any part of a system may affect the function and quality of the system.

ITEEA 2.R
Requirements are the parameters placed on the development of a product or system.

ITEEA 2.S
Trade-off is a decision process recognizing the need for careful compromises among competing factors.

ITEEA 2.V
Controls are mechanisms or particular steps that people perform using information about the system that causes systems to change.

ITEEA 8.E
Design is a creative planning process that leads to useful products and systems.

ITEEA 8.F
There is no perfect design.

ITEEA 8.G
Requirements for a design are made up of criteria and constraints.

ITEEA 9.F
Design involves a set of steps, which can be performed in different sequences and repeated as needed.

ITEEA 9.G
Brainstorming is a group problem-solving design process in which each person in the group presents his or her ideas in an open
forum.

ITEEA 9.H
Modeling, testing, evaluating, and modifying are used to transform ideas into practical solutions.

ITEEA 10.F
Troubleshooting is a problem-solving method used to identify the cause of a malfunction in a technological system.

ITEEA 10.H
Some technological problems are best solved through experimentation.

ITEEA 11.I
Specify criteria and constraints for the design.

ITEEA 11.K
Test and evaluate the design in relation to pre-established requirements, such as criteria and constraints, and refine as needed.

Liz Bray
Highlight
American spelling. Should be 'minimises'

23

Computer Science Teachers Association
CT.2.1
Use the basic steps in algorithmic problem-solving to design solutions.

CT.2.3
Define an algorithm as a sequence of instructions that can be processed by a computer.

CT.2.4
Evaluate ways that different algorithms may be used to solve the same problem.

CT.2.12
Use abstraction to decompose a problem into sub problems.

CT.2.14
Examine connections between elements of mathematics and computer science including binary numbers, logic, sets and functions.

CL.2.3
Collaborate with peers, experts, and others using collaborative practices such as pair programming, working in project teams, and
participating in group active learning activities.

CL.2.4
Exhibit dispositions necessary for collaboration: providing useful feedback, integrating feedback, understanding and accepting
multiple perspectives, socialisation.

CPP.2.4
Demonstrate an understanding of algorithms and their practical application.

CPP.2.5
Implement problem solutions using a programming language including: looping behavior, conditional statements, logic,
expressions, variables, and functions.

CPP.2.8
Demonstrate dispositions amenable to open-ended problem solving and programming.

CPP.2.9
Collect and analyse data that is output from multiple runs of a computer program.

Liz Bray
Highlight
American spelling, should be 'socialisation'

Liz Bray
Highlight
analyse

24

Notes

25

Notes

26

Notes

1. Which of the following best describes your role?
	��� Classroom teacher
	��� Building administrator
	��� District administrator
	��� College professor
	��� Informal education (e.g., library, museum)
	��� Content specialist (e.g., reading teacher, gifted and 	

talented coordinator)
Other ___________________________

2. Which of the following best describes your school?
	��� Public 	 ____Private
	��� Charter 	 ____University
Other ___________________________

3. Which grade level(s) of students do you work with?
	��� K-2 	 ____ Postsecondary
	��� 3-5	 ____ After school
	��� 6-8 	 ____ Summer camps
	��� 9-12	 ____ I don’t teach.

4. Which of these subject areas do you teach?
	��� Science
	��� Technology
	��� Engineering
	��� Math
	��� Robotics competitions
	��� Robotics in the classroom

5. How many years have you been teaching?
	��� 1st year 	 ____ 11-20 years
	��� 2-5 years 	 ____ 21+ years
	��� 6-10 years 	 ____ I don’t teach.

6. Please provide your email address:

7. How strongly do you agree with the following statements?
(1 = strongly disagree, 3 = neutral, 5 = strongly agree)
This session was selected for immediate classroom use.
1	 2	 3	 4	 5
This session was selected to improve my personal pedagogical
knowledge/skill.
1	 2	 3	 4	 5
This session met my needs.
1	 2	 3	 4	 5
The information in this session was clear and well organized.
1	 2	 3	 4	 5
Safe practices were employed during the session.
1	 2	 3	 4	 5

8. Did the session cover the content that you expected it to?
If not, what was different?

9. How likely are you to recommend the session or product to
a friend or colleague? (10 is extremely likely, and 0 is not at
all likely.)
This session?	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10
The product? 	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

10. Do you have any input for the presenter or future
presentations?

11. Have you ever used the product that was demonstrated
in the workshop?
		 Yes		 No

12. What ideas do you have about how you might use this
product in your classroom?

13. What is your favorite takeaway from this workshop?

14. Please share any other comments you might have
regarding the workshop and your overall experience.

Use the back of this sheet if needed.

Add your contact information to the back
of this sheet to be entered in the drawing.

Conference Presentation Evaluation
Topic: _____________________________

Name __

School _ __

Address _ ___

City ____________________________________ ST _____________

Zip_________________________________ Country _____________

Phone __

Visit TETRIXrobotics.com for more information about TETRIX PRIME and TETRIX MAX.

